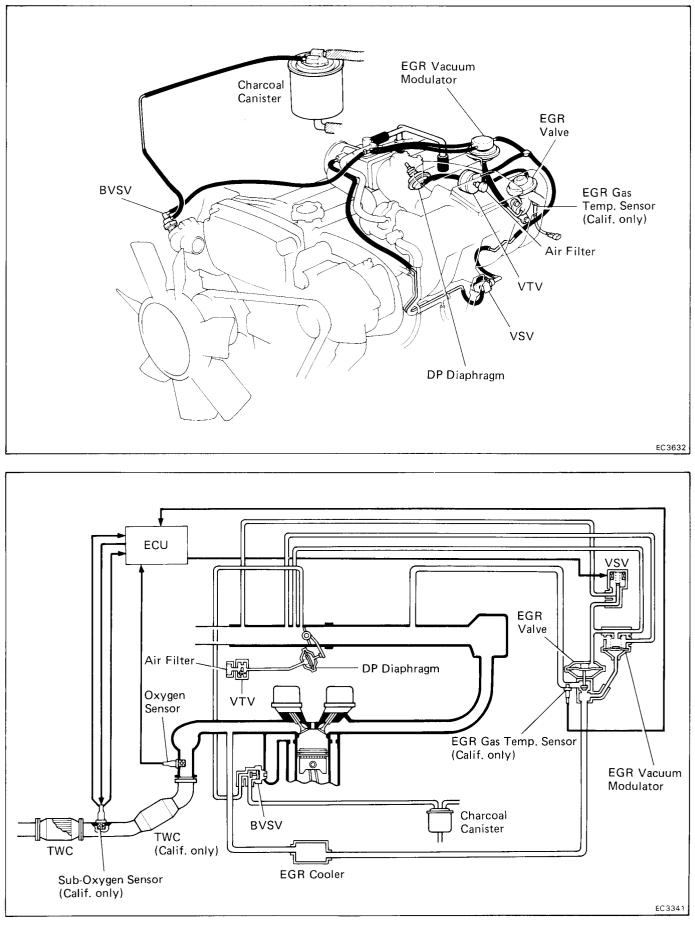
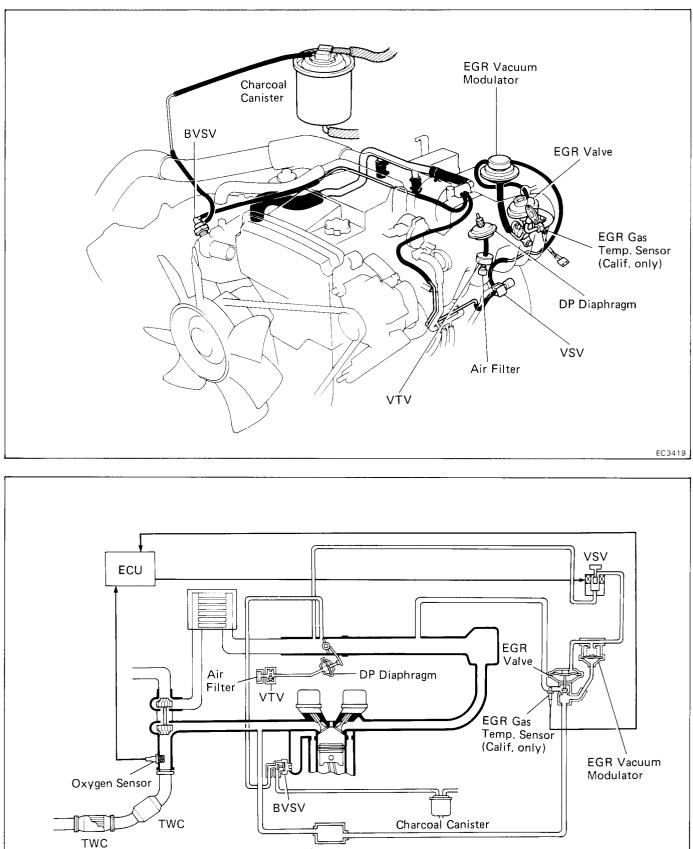
EMISSION CONTROL SYSTEMS

	Page
SYSTEM PURPOSE	EC-2
COMPONENT LAYOUT AND SCHEMATIC DRAWING (7M-GE)	EC-3
COMPONENT LAYOUT AND SCHEMATIC DRAWING (7M-GTE)	EC-4
POSITIVE CRANKCASE VENTILATION (PCV) SYSTEM	EC-5
FUEL EVAPORATIVE EMISSION CONTROL (EVAP) SYSTEM	EC-6
DASH POT (DP) SYSTEM	EC-8
EXHAUST GAS RECIRCULATION (EGR) SYSTEM (7M-GE)	EC-12
EXHAUST GAS RECIRCULATION (EGR) SYSTEM (7M-GTE)	EC-16
THREE-WAY CATALYST (TWC) SYSTEM	EC-20

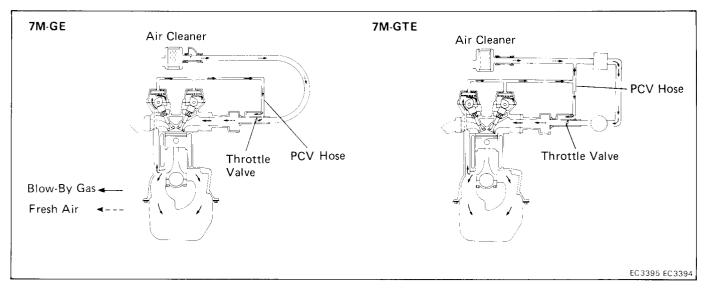

NOTE: TROUBLESHOOTING (See pages EM-4 to 6) EC

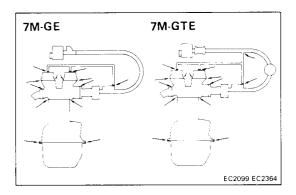
SYSTEM PURPOSE


System	Abbreviation	Purpose
Positive crankcase ventilation	PCV	Reduces blow-by gas (HC)
Fuel evaporative emission control	EVAP	Reduces evaporative HC
Dash pot	DP	Reduces HC and CO
Exhaust gas recirculation	EGR	Reduces NOx
Three-way catalyst	тwс	Reduces HC, CO and NOx
Electronic fuel injection *	EFI	Regulates all engine conditions for reduction of exhaust emissions.

* For inspection and repair of the EFI system, refer to EFI Section.

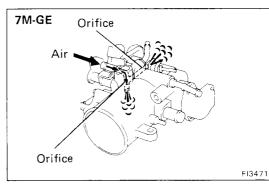
COMPONENT LAYOUT AND SCHEMATIC DRAWING (7M-GE)


COMPONENT LAYOUT AND SCHEMATIC DRAWING (7M-GTE)

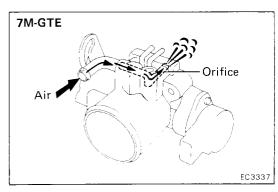

EGR Cooler

EC3418

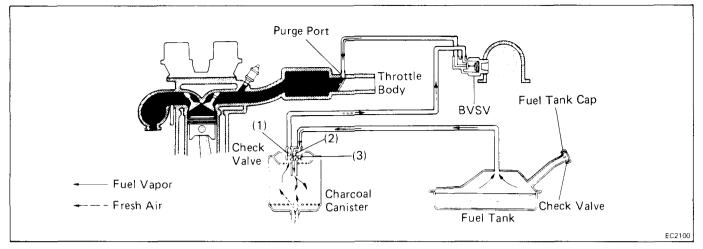
POSITIVE CRANKCASE VENTILATION (PCV) SYSTEM



To reduce HC emissions, crankcase blow-by gas (HC) is routed to the intake manifold for combustion in the cylinders.

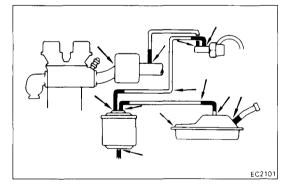

INSPECTION OF PCV HOSE AND CONNECTIONS

1. VISUALLY INSPECT HOSE AND CONNECTIONS Check for cracks, leaks or damage.



2. CLEAN ORIFICE(S)

Clean off any gum deposits in the orifice(s) with solvent and blow out with compressed air.

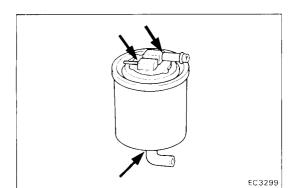


FUEL EVAPORATIVE EMISSION CONTROL (EVAP) SYSTEM

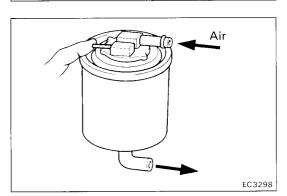
To reduce HC emissions, evaporated fuel from the fuel tank is routed through the charcoal canister to the intake manifold for combustion in the cylinders.

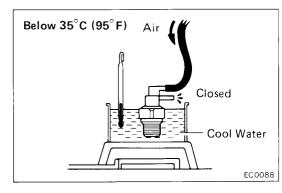
Coolant Temp. BV	BVSV	Throttle Valve Opening	Canist	er Check Va	lvə	Check Valve in	Evaporated Fuel (HC)	
			(1)	(2)	(3)	Сар		
Below 35 [°] C (95 [°] F)	CLOSED	-	_	-		-	HC from tank is absorbed into	
Above		Positioned below purge port	CLOSED			_	the canister.	
54°C (129°F)	OPEN	Positioned above purge port	OPEN		_	_	HC from canister is led into air intake chamber.	
High pressure in tank	-	_	_	OPEN	CLOSED	CLOSED	HC from tank is absorbed into the canister.	
High vacuum in tank	_	_	_	CLOSED	OPEN	OPEN	Air is led into the fuel tank.	

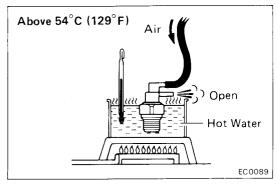
INSPECTION OF FUEL VAPOR LINES, FUEL TANK AND TANK CAP


- 1. **VISUALLY INSPECT LINES AND CONNECTIONS** Look for loose connections, kinks or damage.
- 2. VISUALLY INSPECT FUEL TANK

Look for deformation, cracks or fuel leakage.


Gasket Check Valve (Vacuum Valve)


3. VISUALLY INSPECT FUEL TANK CAP


Check if the cap and/or gasket are deformed or damaged. If necessary, repair or replace the cap.

Tank Pipe Air Purge Pipe

INSPECTION OF CHARCOAL CANISTER

- 1. REMOVE CHARCOAL CANISTER
- 2. VISUALLY INSPECT CHARCOAL CANISTER CASE Look for cracks or damage.
- 3. CHECK FOR CLOGGED FILTER AND STUCK CHECK VALVE
 - (a) Using low pressure compressed air, blow into the tank pipe and check that air flows without resistance from the other pipes.
 - (b) Blow into the purge pipe and check that air does not flow from the other pipes.

If a problem is found, replace the charcoal canister.

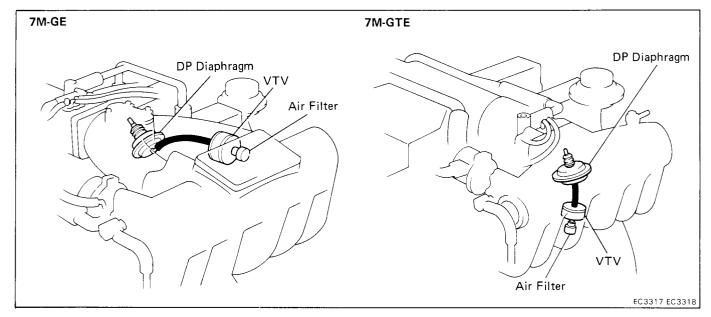
4. CLEAN FILTER IN CANISTER

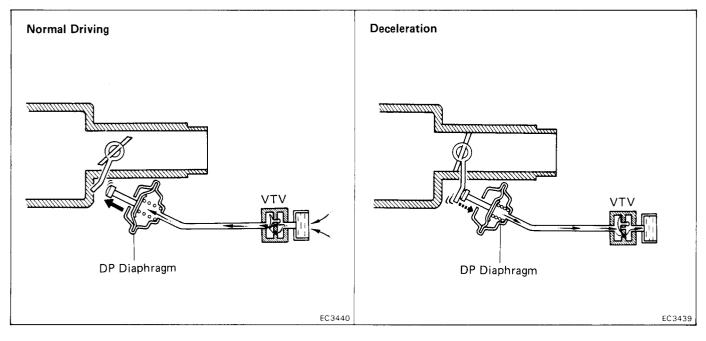
Clean the filter by blowing 3 kg/cm²(43 psi, 294 kPa)of compressed air into the tank pipe while holding the other upper canister pipe closed.

HINT:

- Do not attempt to wash the canister.
- No activated carbon should come out.
- 5. INSTALL CHARCOAL CANISTER

INSPECTION OF BVSV

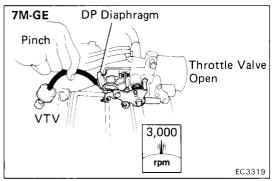

CHECK BVSV BY BLOWING AIR INTO PIPE

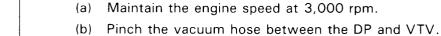

- (a) Drain the coolant from the radiator into a suitable container.
- (b) Remove the BVSV.
- (c) Cool the BVSV to below 35°C (95°F) with cool water.
- (d) Blow air into a pipe and check that the BVSV is closed.
- (e) Heat the BVSV to above 54°C (129°F) with hot water.
- (f) Blow air into a pipe and check that the BVSV is open.
- If a problem is found, replace the BVSV.
- (g) Apply sealant to the threads of the BVSV and reinstall.

Sealant: Part No.08833-00070, THREE BOND 1324 or equivalent

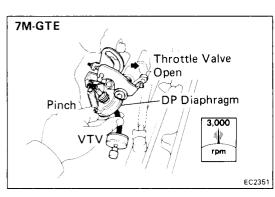
(h) Fill the radiator with coolant.

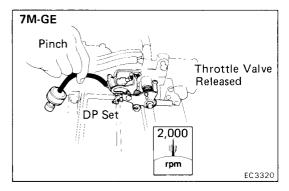
DASH POT (DP) SYSTEM

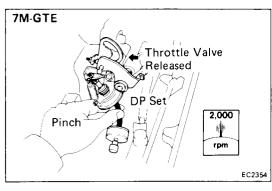


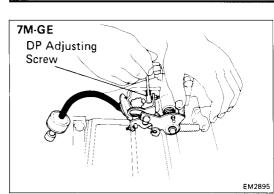

Condition	Diaphragm	VTV	Throttle Valve
Idling	Pushed in by return force of throttle valve	CLOSED	Idle speed position
Normal driving	Pushed out by diaphragm spring	OPEN	High speed position
Deceleration	Pushed in by return force of throttle valve	CLOSED	Slightly opens and then slowly closes to idle position

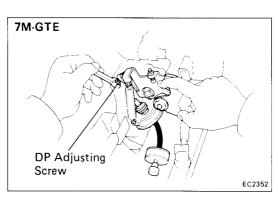
INSPECTION OF DP SYSTEM

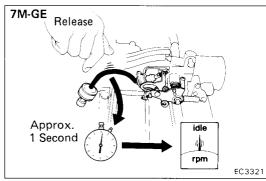

CHECK DP SETTING SPEED


- 1. WARM UP ENGINE
- 2. CHECK IDLING SPEED

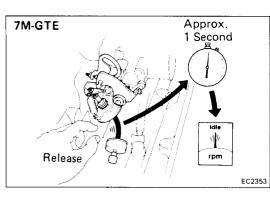


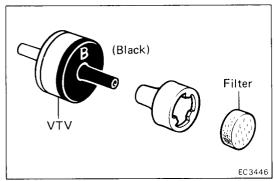

3.





- (c) Release the throttle valve.
- (d) Check that the DP is set.
- DP setting speed: 2,000 rpm

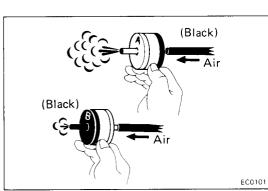

If not at the specified speed, adjust with the DP adjusting screw.



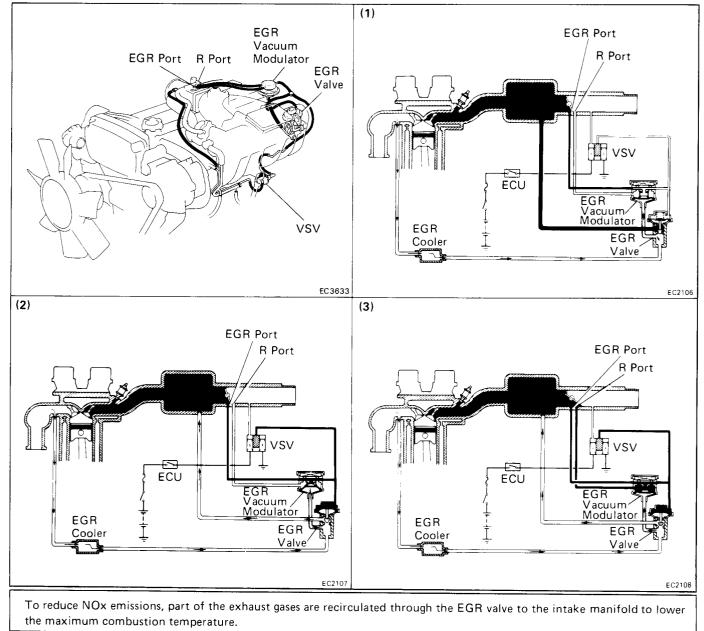
4. CHECK OPERATION OF VTV

- (a) Set the DP speed in the same procedure as above; (a) to (c).
- (b) Release the pinched hose and check that the engine returns to idle speed in approx. 1 second.

IF NO PROBLEM IS FOUND WITH THIS INSPECTION, THE SYSTEM IS OKAY; OTHERWISE INSPECT EACH PART


INSPECTION OF VTV

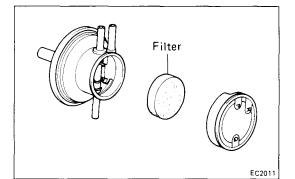
1. CHECK AND CLEAN FILTER ON VTV

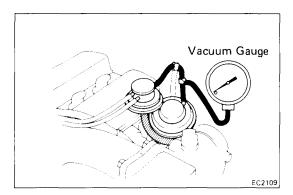

- (a) Check the filter for contamination or damage.
- (b) Using compressed air, clean the filter.

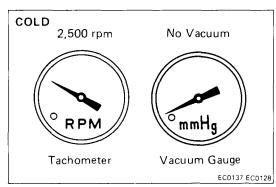
2. CHECK VTV BY BLOWING AIR INTO EACH SIDE

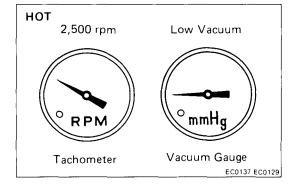
- (a) Check that air flows without resistance from B to A.
- (b) Check that air flows with difficulty from A to B.

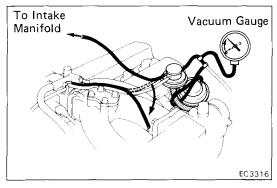
EXHAUST GAS RECIRCULATION (EGR) SYSTEM (7M-GE)




Coolant Temp.	*Engine RPM	vsv	Throttle Valve Opening Angle	Pressure in the EGR Valve Pressure Chamber		EGR Vacuum Modulator	EGR Valve	Exhaust Gas
Below 57 [°] C (135 [°] F) – OPEN		_		_	-	CLOSED	Not recirculated	
	Above 5,200 rpm	OPEN	-				CLOSED	Not recirculated
Above 63°C (145°F) Below 4,800 rpm		Positioned below EGR port		_	- CL0	CLOSED	Not recirculated	
		CLOSED	Positioned be- tween EGR port	(1) LOW	** Pressure con- stantly alter-	OPENS passage to atmosphere	CLOSED	Not recirculated
	CLOBED	and R port	(2) HIGH	nating between low and high	CLOSES passage to atmosphere	OPEN	Recirculated	
			Positioned above R port	(3) HIGH	***	CLOSES passage to atmosphere	OPEN	Recirculated (increase)


II. ONIV.


Pressure increase -Modulator closes — EGR valve opens — Pressure drops EGR valve close - Modulator opens -


When the throttle value is positioned above the R port, the EGR vacuum modulator will close the atmosphere passage and open the EGR valve to increase the EGR gas, even if the exhaust pressure is insufficiently low.

INSPECTION OF EGR SYSTEM

- 1. CHECK AND CLEAN FILTER IN EGR VACUUM MODULATOR
 - (a) Check the filter for contamination or damage.
 - (b) Using compressed air, clean the filter.

2. PREPARATION

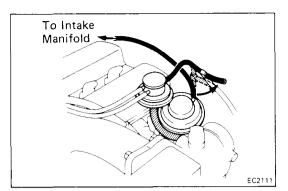
Using a 3-way connector, connect a vacuum gauge to the hose between the EGR valve and EGR vacuum modulator.

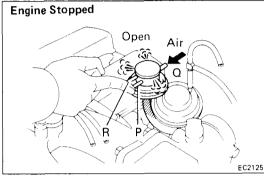
3. CHECK SEATING OF EGR VALVE

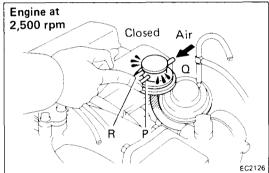
Start the engine and check that the engine starts and runs at idle.

4. CHECK VSV WITH COLD ENGINE

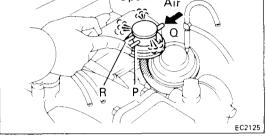
- (a) The coolant temperature should be below 57°C (135°F).
- (b) Check that the vacuum gauge indicates is zero at 2,500 rpm.

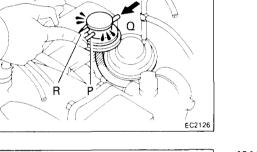

5. CHECK VSV AND EGR VACUUM MODULATOR WITH WARM ENGINE

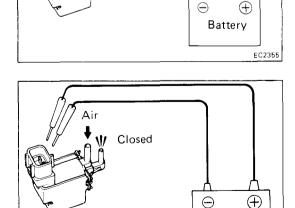

- (a) Warm up the engine.
- (b) Check that the vacuum gauge indication is approx.70 mmHg (2.76 in.Hg, 9.3 kPa) at 2,500 rpm.
- (c) Check that the vacuum gauge indication is zero at idle.
- (d) Disconnect the vacuum hose from R port of the EGR vacuum modulator and connect R port directly to the intake manifold with another hose.
- (e) Check that the vacuum gauge indicates high vacuum at 2,500 rpm.


HINT: As a large amount of EGR gas enters, the engine will misfire slightly.

(f) Disconnect the vacuum gauge and reconnect the vacuum hoses to the proper locations.


EC-14





Open

Battery

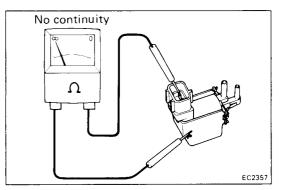
6. CHECK EGR VALVE

- (a) Apply vacuum directly to the EGR valve with the engine idling.
- Check that the engine runs rough or dies. (b)
- (c) Reconnect the vacuum hoses to the proper location.

IF NO PROBLEM IS FOUND WITH THIS INSPECTION, THE SYSTEM IS OKAY; OTHERWISE INSPECT EACH PART

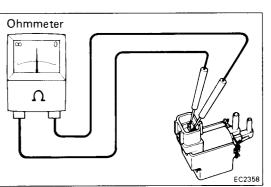
INSPECTION OF EGR VACUUM MODULATOR

CHECK EGR VACUUM MODULATOR OPERATION


- Disconnect the vacuum hoses from ports P, Q and R (a) of the EGR vacuum modulator.
- Block ports P and R with your finger. (b)
- Blow air into port Q. Check that the air passes through (c) to the air filter freely.
- Start the engine and maintain speed at 2,500 rpm. (d)
- Repeat the above test. Check that there is a strong (e) resistance to air flow.

If a problem is found, replace the EGR vacuum modulator.

Reconnect the vacuum hoses to the proper locations. (f)


INSPECTION OF VSV

- CHECK VACUUM CIRCUIT CONTINUITY IN VSV BY 1. **BLOWING AIR INTO PIPE**
 - Connect the VSV terminals to the battery terminals (a) as illustrated.
 - Blow air into a pipe and check that the VSV is open. (b)
 - Disconnect the battery. (c)
 - (d) Blow air into a pipe and check that the VSV is closed.
 - If a problem is found, replace the VSV.

2. CHECK FOR SHORT CIRCUIT

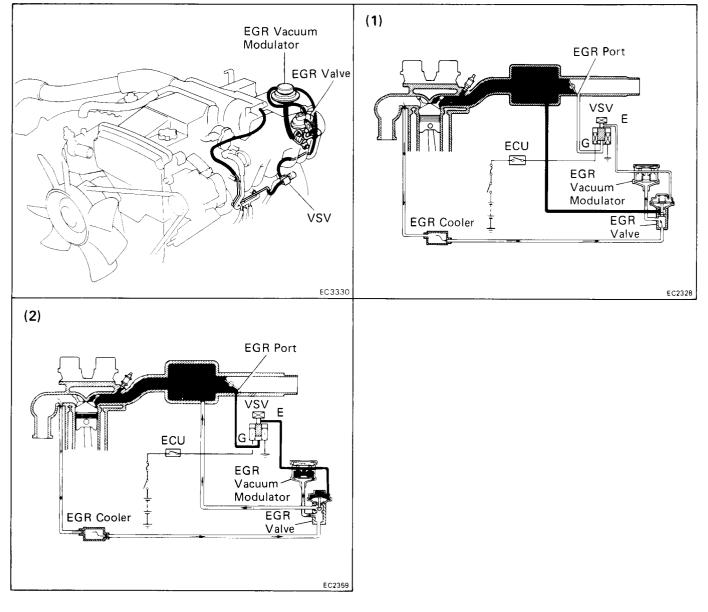
Using an ohmmeter, check that there is no continuity between the terminals and the VSV body. If there is continuity, replace the VSV.

3. CHECK FOR OPEN CIRCUIT

Using an ohmmeter, measure the resistance between the terminals.

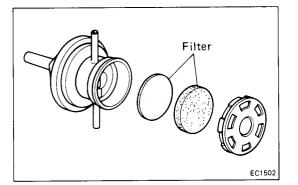
Specified resistance: 38 - 44 Ω at 20°C (68°F) If the resistance is not within specification, replace the VSV.

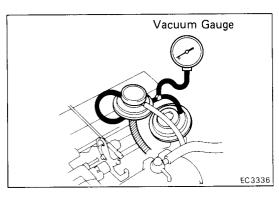
INSPECTION OF EGR VALVE

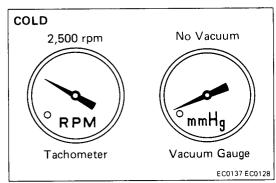

1. REMOVE EGR VALVE

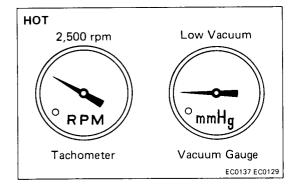
Check the valve for sticking and heavy carbon deposits. If a problem is found, replace it.

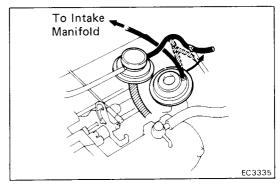
2. INSTALL EGR VALVE WITH NEW GASKET


INSPECTION OF WATER TEMP. SENSOR (See page FI-113)


EXHAUST GAS RECIRCULATION (EGR) SYSTEM (7M-GTE)




To reduce NOx emissions, part of the exhaust gases are recirculated through the EGR valve to the intake manifold to lower the maximum combustion temperature.


Coolant Temp.	vsv	Throttle Valve Pressure in the EGR Opening Angle Valve Pressure Chamber		EGR Vacuum Modulator	EGR Valve	Exhaust Gas	
Below 57°C CLOSED (135°F) (E-G)				_	_	CLOSED	Not recirculated
Above 63°C	OPEN	Positioned below EGR port	(1)	_	_	CLOSED	Not recirculated
(145°F)	(E-G)	Positioned above EGR port	(2)	*	CLOSES passage to atmosphere	OPEN	Recirculated (increase)

INSPECTION OF EGR SYSTEM

1. CHECK AND CLEAN FILTERS IN EGR VACUUM MODULATOR

- (a) Check the filter for contamination or damage.
- (b) Using compressed air, clean the filter.

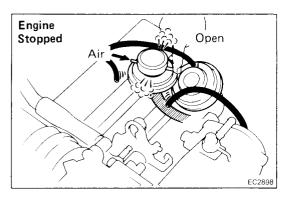
2. PREPARATION

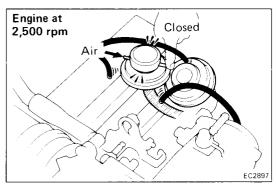
Using a 3-way connector, connect a vacuum gauge to the hose between the EGR valve and EGR vacuum modulator.

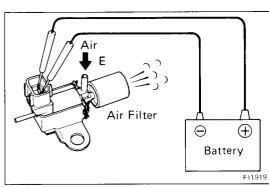
3. CHECK SEATING OF EGR VALVE

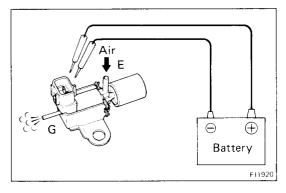
Start the engine and check that the engine starts and runs at idle.

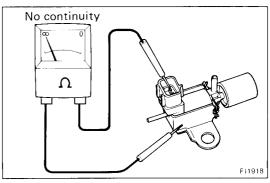
4. CHECK VSV WITH COLD ENGINE


- (a) The coolant temperature should be below 57°C (135°F).
- (b) Check that the vacuum gauge indication is zero at 2,500 rpm.
- 5. CHECK VSV AND EGR VACUUM MODULATOR WITH HOT ENGINE
 - (a) Warm up the engine.
 - (b) Check that the vacuum gauge indication is approx.70 mmHg (2.76 in.Hg, 9.3 kPa) at 2,500 rpm.
 - (c) Disconnect the vacuum gauge and reconnect the vacuum hose to the proper location.


6. CHECK EGR VALVE


- (a) Apply vacuum directly to the EGR valve with the engine idling.
- (b) Check that the engine runs rough or dies.
- (c) Reconnect the vacuum hoses to the proper location.


IF NO PROBLEM IS FOUND WITH THIS INSPECTION, THE SYSTEM IS OKAY; OTHERWISE INSPECT EACH PART


EC-18

INSPECTION OF EGR VACUUM MODULATOR

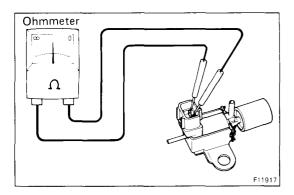
CHECK EGR VACUUM MODULATOR OPERATION

- (a) Disconnect the vacuum hoses from the EGR vacuum modulator.
- (b) Block port P with your finger.
- (c) Blow air into the other pipe. Check that the air passes through to the air filter freely.
- (d) Start the engine and maintain speed at 2,500 rpm.
- (e) Repeat the above test. Check that there is a strong resistance to air flow.

If a problem is found, replace the EGR vacuum modulator.

(f) Reconnect the vacuum hoses to the proper locations.

INSPECTION OF VSV


1. CHECK VACUUM CIRCUIT CONTINUITY IN VSV BY BLOWING AIR INTO PIPE

- (a) Connect the VSV terminals to the battery terminals as illustrated.
- (b) Blow into pipe E and check that air comes out of the air filter.
- (c) Disconnect the battery.
- (d) Blow into pipe E and check that air comes out of pipe G.
- If a problem is found, replace the VSV.

2. CHECK FOR SHORT CIRCUIT

Using an ohmmeter, check that there is no continuity between the terminals and the VSV body.

If there is continuity, replace the VSV.

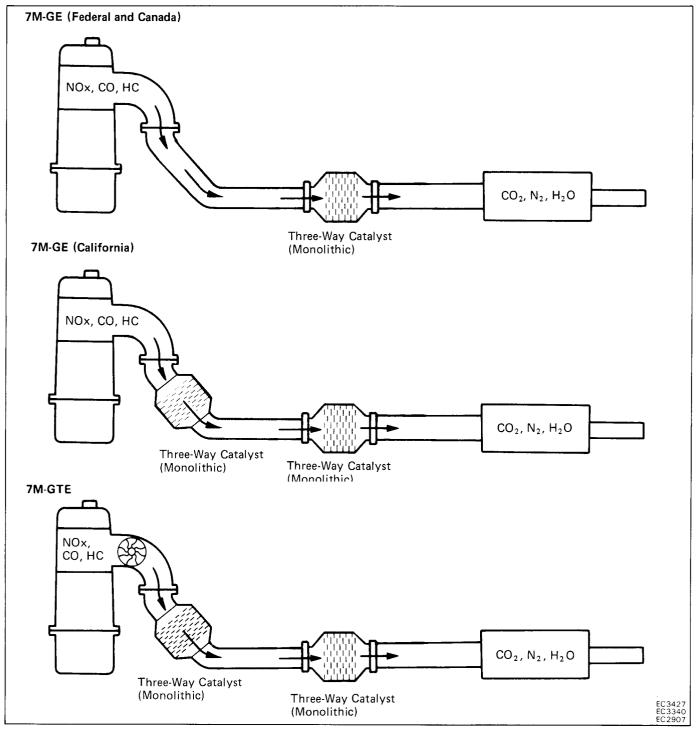
3. CHECK FOR OPEN CIRCUIT

Using an ohmmeter, measure the resistance between the terminals.

Specified resistance: $38 - 44 \Omega$ at 20° C (68°F)

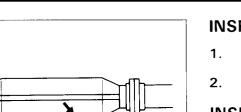
If the resistance is not within specification, replace the $\ensuremath{\mathsf{VSV}}$.

INSPECTION OF EGR VALVE


1. REMOVE EGR VALVE

Check the valve for sticking and heavy carbon deposits. if a problem is found, replace it.

2. INSTALL EGR VALVE WITH NEW GASKET


INSPECTION OF WATER TEMP. SENSOR (See page FI-113)

THREE-WAY CATALYST (TWC) SYSTEM

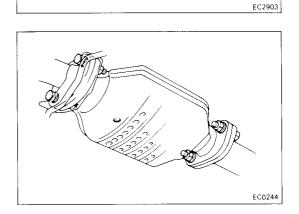
To reduce HC, CO and NOx emissions, they are oxidized, reduced and converted to nitrogen (N₂), carbon dioxide (CO₂) and water (H₂O) by the catalyst.

Exhaust Port	тwс	Exhaust Gas
HC, CO, AND NOx	OXIDATION AND REDUCTION	$\begin{matrix} \text{CO}_2 \\ \text{H}_2 \text{O} \\ \text{N}_2 \end{matrix}$

EC2902

INSPECTION OF EXHAUST PIPE ASSEMBLY

- 1. CHECK CONNECTIONS FOR LOOSENESS OR DAMAGE
- 2. CHECK CLAMPS FOR WEAKNESS, CRACKS OR DAMAGE


INSPECTION OF CATALYTIC CONVERTER

CHECK FOR DENTS OR DAMAGE

If any part of the protector is damaged or dented to the extent that it touches the catalyst, repair or replace it.

INSPECTION OF HEAT INSULATOR

- 1. CHECK HEAT INSULATOR FOR DAMAGE
- 2. CHECK FOR ADEQUATE CLEARANCE BETWEEN CATA-LYTIC CONVERTER AND HEAT INSULATOR

Heat Insulator

HIIIIIIIIIIIII

REPLACEMENT OF CATALYTIC CONVERTER

1. REMOVE CONVERTER

- (a) Jack up the vehicle.
- (b) Check that the converter is cool.
- (c) Remove the bolts at the front and rear of the converter.
- (d) Remove the converter and gaskets.

2. INSTALL CONVERTER

- (a) Place new gaskets on the converter front and rear pipes, and connect the converter to the exhaust pipes.
- (b) Tighten the bolts.
- Torque: Catalyst-Exhaust pipe

440 kg-cm (32 ft-lb, 43 N·m)

– MEMO –